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Abstract — An efficient implementation of the surface 
impedance boundary condition (SIBC) for the finite-difference 
time-domain (FDTD) method is presented in this paper. The 
surface impedance function of a lossy medium is approximated 
with a series of first-order rational functions by using the 
vector fitting (VF) technique. Thus, the resulting time-domain 
convolution integrals are efficiently computed using recursive 
formulas. A sensitivity analysis is performed to determine the 
minimum number of poles for several lossy media and field 
source configurations. 

I. INTRODUCTION 

Surface impedance boundary conditions (SIBCs) are an 
efficient way to analyze scattering from lossy dielectric 
objects or imperfect conductors by eliminating such regions 
from the solution domain [1]. This allows a large saving in 
computational resources. However, when the finite-
difference time-domain (FDTD) method is used, a 
convolution integral in the time domain must be solved due 
to the frequency-dependent nature of the SIBC. 

Recently, many researchers have implemented the SIBC 
using FDTD codes [2]-[4]. These several methods differs 
each other from the different way to efficiently evaluate 
such a convolution. In [2]-[3], the Prony’s method was used 
to approximate the time-domain surface impedance by a 
series of exponential functions and therefore recursively 
evaluate the integral convolution. Specifically, a series of 20 
exponential functions was employed in [2], while 10 terms 
only were adopted in [3]. Subsequently, Oh and Schutt-Aine 
approximated the normalized frequency-domain impedance 
with a first-order rational series expansion [4]. As well-
known, rational functions in frequency-domain can be 
efficiently implemented with recursive methods in time-
domain and a series of 6-8 rational functions were chosen to 
represent a good approximation in [4].  

In this paper, the same approach of Oh and Schutt-Aine is 
undertaken but the normalized frequency-domain surface 
impedance is approximated by first-order rational functions 
coming from the vector fitting (VF) procedure [5] instead of 
a rational Chebyshev approximation routine. A sensitivity 
analysis is performed to verify the feasibility and accuracy 
of the proposed method (i.e., to determine the minimum 
number of poles) for several near- and far-field 
configurations and lossy media. The advantage of the 
proposed technique is that a reduced number of poles can be 
adopted for a limited frequency range and class of lossy 
media by retaining the same order of accuracy degree. 

II. FDTD IMPLEMENTATION OF SIBCS 

The first-order (or Leontovich) impedance boundary 
condition in the frequency domain reads [1]  

( ) ( ) ( )t c tZω ω ω= ×E n H                   (1) 

where subscript t denotes the tangential field components, n 
is the unit vector pointing outwards from the conducting 
body, and Zc(ω) is the characteristic surface impedance of a 
medium having permeability µ2, permittivity �2 and 
conductivity �2, given by  
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To suitably perform the rational function approximation, 
the surface impedance function (2) is transformed into the 
Laplace domain and normalized [4] 

( ) ( )
2

1 '
'

1 'N c
s

Z s Z
s

ω
η

= =
+

                  (3) 

being s’ = jω/a and a = �2/ �2.  
By using the VF procedure, the normalized impedance 

(3) can be approximated by a rational function of the kind: 
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where the coefficients b, Ci and pi are respectively the gain 
term, and the i-th residue and pole extracted by the VF 
procedure, while L is the number of poles. Applying (4), the 
SIBC in the time domain can be written as 
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Equation (5) can be efficiently implemented into FDTD 
codes using recursive convolutions. Also note that in (5) the 
poles and residues are fixed for any considered material. 
Thus, they are predetermined only once for any simulation.  

III. SENSITIVITY ANALYSIS 

In [4], the normalized impedance (3) was approximated 
in the broad interval s’ = [0, 3]. In this paper, the upper 
bound of the approximation interval is chosen to be s’ = 0.1 
since at this value correspond the frequency limit of good 
conductor (i.e., �2/ω�2 >> 1). This is due to the applicability 
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limits of the Leontovich impedance boundary condition (1). 
Moreover, despite of a unique approximation, two or more 
sub-intervals of s’ are here investigated to minimize the 
number of poles. Indeed, when a limited frequency band is 
of interest, as for typical FDTD applications where the 
frequency range spans from some megahertzs to tens of 
gigahertzs, then a reduced interval of s’ is required and the 
VF can be optimized only in that sub-interval. Obviously, 
the interval of s’ depends on the values of a, therefore 
different bands can be selected for a lossy dielectric or 
imperfect conductors. The choice of the suitable band for a 
specific lossy media will be deeply described in the 
extended version of the paper, but the goodness of the 
proposed method is shown in Fig. 1, where the relative error 
of the normalized impedance is reported for several appro-
ximations. As compared with [4], for a fixed number of 
poles (i.e., L = 8) a more accurate solution is provided, 
especially for low values of s’. Moreover, when only a sub-
interval of s’ is desired, the number of poles can be reduced 
to L = 5 or 4 by retaining the accuracy degree.  

To demonstrate the efficiency of the proposed method, 
the reflection coefficient � = (Z2 - Z1)/( Z2 + Z1), where Z1 is 
the wave impedance of the medium where the field is 
reflected and Z2 = Zc is the wave impedance of the medium 
where the field is transmitted, is computed for three 
different propagation modes. Firstly, the reflection from a 
lossy media with �2 = 200 S/m, when propagating a plane 
wave in free space (Z1 = 377 �), is considered (see Fig. 2). 
Then, the reflection from the same media when propagating 
an electric (Z1 = 1000 �) or magnetic (Z1 = 1 �) near-field 
is considered in Figs. 3 and 4, respectively. As can be 
observed, the importance of reducing the approximation 
error in the low band of s’ is highlighted in the magnetic 
near-field propagation due to the low value of Z1 which is 
comparable with the surface impedance Zc. In that case, the 
SIBC adopted in [4] becomes unacceptable while the 
proposed one still follows the analytic results in the whole 
frequency range. Finally, if a reduced frequency range is of 
interest (e.g., the frequencies from some megahertzs to few 
gigahertzs), a good accuracy can be obtained with only L = 
4 poles by using a VF weighted in the band named b2.  

In the extended version of the paper more configurations 
will be deeper investigated and the VF coefficients will be 
explicitly given for the several bands.  

 
Fig. 1. Relative error of the normalized impedance for the several 

approximated rational functions.  
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Fig. 2. Analytic and simulated reflection coefficients from a lossy 

dielectric with �2 = 200 S/m and far-field configuration (Z1 = 377 �).  
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Fig. 3. Analytic and simulated reflection coefficients from a lossy 

dielectric with �2 = 200 S/m and near-field configuration (Z1 = 1000 �).  
 

  
Fig. 4. Analytic and simulated reflection coefficients from a lossy 

dielectric with �2 = 200 S/m and near-field configuration (Z1 = 1 �).  
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